Abstract:Air Quality Monitoring and Forecasting has been a popular research topic in recent years. Recently, data-driven approaches for air quality forecasting have garnered significant attention, owing to the availability of well-established data collection facilities in urban areas. Fixed infrastructures, typically deployed by national institutes or tech giants, often fall short in meeting the requirements of diverse personalized scenarios, e.g., forecasting in areas without any existing infrastructure. Consequently, smaller institutes or companies with limited budgets are compelled to seek tailored solutions by introducing more flexible infrastructures for data collection. In this paper, we propose an expandable graph attention network (EGAT) model, which digests data collected from existing and newly-added infrastructures, with different spatial structures. Additionally, our proposal can be embedded into any air quality forecasting models, to apply to the scenarios with evolving spatial structures. The proposal is validated over real air quality data from PurpleAir.
Abstract:Air quality forecasting has garnered significant attention recently, with data-driven models taking center stage due to advancements in machine learning and deep learning models. However, researchers face challenges with complex data acquisition and the lack of open-sourced datasets, hindering efficient model validation. This paper introduces PurpleAirSF, a comprehensive and easily accessible dataset collected from the PurpleAir network. With its high temporal resolution, various air quality measures, and diverse geographical coverage, this dataset serves as a useful tool for researchers aiming to develop novel forecasting models, study air pollution patterns, and investigate their impacts on health and the environment. We present a detailed account of the data collection and processing methods employed to build PurpleAirSF. Furthermore, we conduct preliminary experiments using both classic and modern spatio-temporal forecasting models, thereby establishing a benchmark for future air quality forecasting tasks.