Abstract:Real-world optimization problems may have a different underlying structure. In black-box optimization, the dependencies between decision variables remain unknown. However, some techniques can discover such interactions accurately. In Large Scale Global Optimization (LSGO), problems are high-dimensional. It was shown effective to decompose LSGO problems into subproblems and optimize them separately. The effectiveness of such approaches may be highly dependent on the accuracy of problem decomposition. Many state-of-the-art decomposition strategies are derived from Differential Grouping (DG). However, if a given problem consists of non-additively separable subproblems, their ability to detect only true interactions might decrease significantly. Therefore, we propose Incremental Recursive Ranking Grouping (IRRG) that does not suffer from this flaw. IRRG consumes more fitness function evaluations than the recent DG-based propositions, e.g., Recursive DG 3 (RDG3). Nevertheless, the effectiveness of the considered Cooperative Co-evolution frameworks after embedding IRRG or RDG3 was similar for problems with additively separable subproblems that are suitable for RDG3. However, after replacing the additive separability with non-additive, embedding IRRG leads to results of significantly higher quality.
Abstract:Evolutionary methods are effective tools for obtaining high-quality results when solving hard practical problems. Linkage learning may increase their effectiveness. One of the state-of-the-art methods that employ linkage learning is the Parameter-less Population Pyramid (P3). P3 is dedicated to solving single-objective problems in discrete domains. Recent research shows that P3 is highly competitive when addressing problems with so-called overlapping blocks, which are typical for practical problems. In this paper, we consider a multi-objective industrial process planning problem that arises from practice and is NP-hard. To handle it, we propose a multi-objective version of P3. The extensive research shows that our proposition outperforms the competing methods for the considered practical problem and typical multi-objective benchmarks.