Abstract:The impressive capabilities in Large Language Models (LLMs) provide a powerful approach to reimagine users' typing experience. This paper demonstrates Proofread, a novel Gboard feature powered by a server-side LLM in Gboard, enabling seamless sentence-level and paragraph-level corrections with a single tap. We describe the complete system in this paper, from data generation, metrics design to model tuning and deployment. To obtain models with sufficient quality, we implement a careful data synthetic pipeline tailored to online use cases, design multifaceted metrics, employ a two-stage tuning approach to acquire the dedicated LLM for the feature: the Supervised Fine Tuning (SFT) for foundational quality, followed by the Reinforcement Learning (RL) tuning approach for targeted refinement. Specifically, we find sequential tuning on Rewrite and proofread tasks yields the best quality in SFT stage, and propose global and direct rewards in the RL tuning stage to seek further improvement. Extensive experiments on a human-labeled golden set showed our tuned PaLM2-XS model achieved 85.56\% good ratio. We launched the feature to Pixel 8 devices by serving the model on TPU v5 in Google Cloud, with thousands of daily active users. Serving latency was significantly reduced by quantization, bucket inference, text segmentation, and speculative decoding. Our demo could be seen in \href{https://youtu.be/4ZdcuiwFU7I}{Youtube}.
Abstract:To make off-screen interaction without specialized hardware practical, we investigate using deep learning methods to process the common built-in IMU sensor (accelerometers and gyroscopes) on mobile phones into a useful set of one-handed interaction events. We present the design, training, implementation and applications of TapNet, a multi-task network that detects tapping on the smartphone. With phone form factor as auxiliary information, TapNet can jointly learn from data across devices and simultaneously recognize multiple tap properties, including tap direction and tap location. We developed two datasets consisting of over 135K training samples, 38K testing samples, and 32 participants in total. Experimental evaluation demonstrated the effectiveness of the TapNet design and its significant improvement over the state of the art. Along with the datasets, (https://sites.google.com/site/michaelxlhuang/datasets/tapnet-dataset), and extensive experiments, TapNet establishes a new technical foundation for off-screen mobile input.