Abstract:Nonparametric learning is a fundamental concept in machine learning that aims to capture complex patterns and relationships in data without making strong assumptions about the underlying data distribution. Owing to simplicity and familiarity, one of the most well-known algorithms under this paradigm is the $k$-nearest neighbors ($k$-NN) algorithm. Driven by the usage of machine learning in safety-critical applications, in this work, we shed new light on the traditional nearest neighbors algorithm from the perspective of information theory and propose a robust and interpretable framework for tasks such as classification, regression, and anomaly detection using a single model. Instead of using a traditional distance measure which needs to be scaled and contextualized, we use a novel formulation of \textit{surprisal} (amount of information required to explain the difference between the observed and expected result). Finally, we demonstrate this architecture's capability to perform at-par or above the state-of-the-art on classification, regression, and anomaly detection tasks using a single model with enhanced interpretability by providing novel concepts for characterizing data and predictions.
Abstract:Machine learning models have become more and more complex in order to better approximate complex functions. Although fruitful in many domains, the added complexity has come at the cost of model interpretability. The once popular k-nearest neighbors (kNN) approach, which finds and uses the most similar data for reasoning, has received much less attention in recent decades due to numerous problems when compared to other techniques. We show that many of these historical problems with kNN can be overcome, and our contribution has applications not only in machine learning but also in online learning, data synthesis, anomaly detection, model compression, and reinforcement learning, without sacrificing interpretability. We introduce a synthesis between kNN and information theory that we hope will provide a clear path towards models that are innately interpretable and auditable. Through this work we hope to gather interest in combining kNN with information theory as a promising path to fully auditable machine learning and artificial intelligence.