Abstract:We present EngineBench, the first machine learning (ML) oriented database to use high quality experimental data for the study of turbulent flows inside combustion machinery. Prior datasets for ML in fluid mechanics are synthetic or use overly simplistic geometries. EngineBench is comprised of real-world particle image velocimetry (PIV) data that captures the turbulent airflow patterns in a specially-designed optical engine. However, in PIV data from internal flows, such as from engines, it is often challenging to achieve a full field of view and large occlusions can be present. In order to design optimal combustion systems, insight into the turbulent flows in these obscured areas is needed, which can be provided via inpainting models. Here we propose a novel inpainting task using random edge gaps, a technique that emphasises realism by introducing occlusions at random sizes and orientations at the edges of the PIV images. We test five ML methods on random edge gaps using pixel-wise, vector-based, and multi-scale performance metrics. We find that UNet-based models are more accurate than the industry-norm non-parametric approach and the context encoder at this task on both small and large gap sizes. The dataset and inpainting task presented in this paper support the development of more general-purpose pre-trained ML models for engine design problems. The method comparisons allow for more informed selection of ML models for problems in experimental flow diagnostics. All data and code are publicly available at https://eng.ox.ac.uk/tpsrg/research/enginebench/.
Abstract:Class-agnostic counting methods enumerate objects of an arbitrary class, providing tremendous utility in many fields. Prior works have limited usefulness as they require either a set of examples of the type to be counted or that the image contains only a single type of object. A significant factor in these shortcomings is the lack of a dataset to properly address counting in settings with more than one kind of object present. To address these issues, we propose the first Multi-class, Class-Agnostic Counting dataset (MCAC) and A Blind Counter (ABC123), a method that can count multiple types of objects simultaneously without using examples of type during training or inference. ABC123 introduces a new paradigm where instead of requiring exemplars to guide the enumeration, examples are found after the counting stage to help a user understand the generated outputs. We show that ABC123 outperforms contemporary methods on MCAC without the requirement of human in-the-loop annotations. We also show that this performance transfers to FSC-147, the standard class-agnostic counting dataset.
Abstract:We present a novel approach, in which we learn to cluster data directly from side information, in the form of a small set of pairwise examples. Unlike previous methods, with or without side information, we do not need to know the number of clusters, their centers or any kind of distance metric for similarity. Our method is able to divide the same data points in various ways dependant on the needs of a specific task, defined by the side information. Contrastingly, other work generally finds only the intrinsic, most obvious, clusters. Inspired by the mean shift algorithm, we implement our new clustering approach using a custom iterative neural network to create Differentiable Mean Shift (DMS), a state of the art, dataset agnostic, clustering method. We found that it was possible to train a strong cluster definition without enforcing a constraint that each cluster must be presented during training. DMS outperforms current methods in both the intrinsic and non-intrinsic dataset tasks.