Abstract:Recent advancements in image synthesis have enabled high-quality image generation and manipulation. Most works focus on: 1) conditional manipulation, where an image is modified conditioned on a given attribute, or 2) disentangled representation learning, where each latent direction should represent a distinct semantic attribute. In this paper, we focus on a different and less studied research problem, called Contrastive Analysis (CA). Given two image datasets, we want to separate the common generative factors, shared across the two datasets, from the salient ones, specific to only one dataset. Compared to existing methods, which use attributes as supervised signals for editing (e.g., glasses, gender), the proposed method is weaker, since it only uses the dataset signal. We propose a novel framework for CA, that can be adapted to both GAN and Diffusion models, to learn both common and salient factors. By defining new and well-adapted learning strategies and losses, we ensure a relevant separation between common and salient factors, preserving a high-quality generation. We evaluate our approach on diverse datasets, covering human faces, animal images and medical scans. Our framework demonstrates superior separation ability and image quality synthesis compared to prior methods.




Abstract:The effectiveness of Recommender Systems (RS) is closely tied to the quality and distinctiveness of user profiles, yet despite many advancements in raw performance, the sensitivity of RS to user profile quality remains under-researched. This paper introduces novel information-theoretic measures for understanding recommender systems: a "surprise" measure quantifying users' deviations from popular choices, and a "conditional surprise" measure capturing user interaction coherence. We evaluate 7 recommendation algorithms across 9 datasets, revealing the relationships between our measures and standard performance metrics. Using a rigorous statistical framework, our analysis quantifies how much user profile density and information measures impact algorithm performance across domains. By segmenting users based on these measures, we achieve improved performance with reduced data and show that simpler algorithms can match complex ones for low-coherence users. Additionally, we employ our measures to analyze how well different recommendation algorithms maintain the coherence and diversity of user preferences in their predictions, providing insights into algorithm behavior. This work advances the theoretical understanding of user behavior and practical heuristics for personalized recommendation systems, promoting more efficient and adaptive architectures.
Abstract:We present a comprehensive framework for applying rigorous statistical techniques from econometrics to analyze and improve machine learning systems. We introduce key statistical methods such as Ordinary Least Squares (OLS) regression, Analysis of Variance (ANOVA), and logistic regression, explaining their theoretical foundations and practical applications in machine learning evaluation. The document serves as a guide for researchers and practitioners, detailing how these techniques can provide deeper insights into model behavior, performance, and fairness. We cover the mathematical principles behind each method, discuss their assumptions and limitations, and provide step-by-step instructions for their implementation. The paper also addresses how to interpret results, emphasizing the importance of statistical significance and effect size. Through illustrative examples, we demonstrate how these tools can reveal subtle patterns and interactions in machine learning models that are not apparent from traditional evaluation metrics. By connecting the fields of econometrics and machine learning, this work aims to equip readers with powerful analytical tools for more rigorous and comprehensive evaluation of AI systems. The framework presented here contributes to developing more robust, interpretable, and fair machine learning technologies.