for the Alzheimer's Disease Neuroimaging Initiative
Abstract:Segmenting healthy tissue structures alongside lesions in brain Magnetic Resonance Images (MRI) remains a challenge for today's algorithms due to lesion-caused disruption of the anatomy and lack of jointly labeled training datasets, where both healthy tissues and lesions are labeled on the same images. In this paper, we propose a method that is robust to lesion-caused disruptions and can be trained from disparately labeled training sets, i.e., without requiring jointly labeled samples, to automatically segment both. In contrast to prior work, we decouple healthy tissue and lesion segmentation in two paths to leverage multi-sequence acquisitions and merge information with an attention mechanism. During inference, an image-specific adaptation reduces adverse influences of lesion regions on healthy tissue predictions. During training, the adaptation is taken into account through meta-learning and co-training is used to learn from disparately labeled training images. Our model shows an improved performance on several anatomical structures and lesions on a publicly available brain glioblastoma dataset compared to the state-of-the-art segmentation methods.
Abstract:Neural networks achieve state-of-the-art performance in many supervised learning tasks when the training data distribution matches the test data distribution. However, their performance drops significantly under domain (covariate) shift, a prevalent issue in medical image segmentation due to varying acquisition settings across different scanner models and protocols. Recently, foundational models (FMs) trained on large datasets have gained attention for their ability to be adapted for downstream tasks and achieve state-of-the-art performance with excellent generalization capabilities on natural images. However, their effectiveness in medical image segmentation remains underexplored. In this paper, we investigate the domain generalization performance of various FMs, including DinoV2, SAM, MedSAM, and MAE, when fine-tuned using various parameter-efficient fine-tuning (PEFT) techniques such as Ladder and Rein (+LoRA) and decoder heads. We introduce a novel decode head architecture, HQHSAM, which simply integrates elements from two state-of-the-art decoder heads, HSAM and HQSAM, to enhance segmentation performance. Our extensive experiments on multiple datasets, encompassing various anatomies and modalities, reveal that FMs, particularly with the HQHSAM decode head, improve domain generalization for medical image segmentation. Moreover, we found that the effectiveness of PEFT techniques varies across different FMs. These findings underscore the potential of FMs to enhance the domain generalization performance of neural networks in medical image segmentation across diverse clinical settings, providing a solid foundation for future research. Code and models are available for research purposes at \url{https://github.com/kerem-cekmeceli/Foundation-Models-for-Medical-Imagery}.