Abstract:Flow Shop Scheduling (FSS) has been widely researched due to its application in many types of fields, while the human participant brings great challenges to this problem. Manpower scheduling captures attention for assigning workers with diverse proficiency to the appropriate stages, which is of great significance to production efficiency. In this paper, we present a novel algorithm called Self-encoding Barnacle Mating Optimizer (SBMO), which solves the FSS problem considering worker proficiency, defined as a new problem, Flow Shop Manpower Scheduling Problem (FSMSP). The highlight of the SBMO algorithm is the combination with the encoding method, crossover and mutation operators. Moreover, in order to solve the local optimum problem, we design a neighborhood search scheme. Finally, the extensive comparison simulations are conducted to demonstrate the superiority of the proposed SBMO. The results indicate the effectiveness of SBMO in approximate ratio, powerful stability, and execution time, compared with the classic and popular counterparts.
Abstract:Origin-Destination (OD) flow, as an abstract representation of the object`s movement or interaction, has been used to reveal the urban mobility and human-land interaction pattern. As an important spatial analysis approach, the clustering methods of point events have been extended to OD flows to identify the dominant trends and spatial structures of urban mobility. However, the existing methods for OD flow cluster-detecting are limited both in specific spatial scale and the uncertain result due to different parameters setting, which is difficult for complicated OD flows clustering under spatial heterogeneity. To address these limitations, in this paper, we proposed a novel OD flows cluster-detecting method based on the OPTICS algorithm which can identify OD flow clusters with various aggregation scales. The method can adaptively determine parameter value from the dataset without prior knowledge and artificial intervention. Experiments indicated that our method outperformed three state-of-the-art methods with more accurate and complete of clusters and less noise. As a case study, our method is applied to identify the potential routes for public transport service settings by detecting OD flow clusters within urban travel data.