Abstract:The use of multiple modalities (e.g., face and fingerprint) or multiple algorithms (e.g., three face comparators) has shown to improve the recognition accuracy of an operational biometric system. Over time a biometric system may evolve to add new modalities, retire old modalities, or be merged with other biometric systems. This can lead to scenarios where there are missing scores corresponding to the input probe set. Previous work on this topic has focused on either the verification or identification tasks, but not both. Further, the proportion of missing data considered has been less than 50%. In this work, we study the impact of missing score data for both the verification and identification tasks. We show that the application of various score imputation methods along with simple sum fusion can improve recognition accuracy, even when the proportion of missing scores increases to 90%. Experiments show that fusion after score imputation outperforms fusion with no imputation. Specifically, iterative imputation with K nearest neighbors consistently surpasses other imputation methods in both the verification and identification tasks, regardless of the amount of scores missing, and provides imputed values that are consistent with the ground truth complete dataset.
Abstract:Combining match scores from different biometric systems via fusion is a well-established approach to improving recognition accuracy. However, missing scores can degrade performance as well as limit the possible fusion techniques that can be applied. Imputation is a promising technique in multibiometric systems for replacing missing data. In this paper, we evaluate various score imputation approaches on three multimodal biometric score datasets, viz. NIST BSSR1, BIOCOP2008, and MIT LL Trimodal, and investigate the factors which might influence the effectiveness of imputation. Our studies reveal three key observations: (1) Imputation is preferable over not imputing missing scores, even when the fusion rule does not require complete score data. (2) Balancing the classes in the training data is crucial to mitigate negative biases in the imputation technique towards the under-represented class, even if it involves dropping a substantial number of score vectors. (3) Multivariate imputation approaches seem to be beneficial when scores between modalities are correlated, while univariate approaches seem to benefit scenarios where scores between modalities are less correlated.