Abstract:The application of Shapley values to high-dimensional, time-series-like data is computationally challenging - and sometimes impossible. For $N$ inputs the problem is $2^N$ hard. In image processing, clusters of pixels, referred to as superpixels, are used to streamline computations. This research presents an efficient solution for time-seres-like data that adapts the idea of superpixels for Shapley value computation. Motivated by a forensic DNA classification example, the method is applied to multivariate time-series-like data whose features have been classified by a convolutional neural network (CNN). In DNA processing, it is important to identify alleles from the background noise created by DNA extraction and processing. A single DNA profile has $31,200$ scan points to classify, and the classification decisions must be defensible in a court of law. This means that classification is routinely performed by human readers - a monumental and time consuming process. The application of a CNN with fast computation of meaningful Shapley values provides a potential alternative to the classification. This research demonstrates the realistic, accurate and fast computation of Shapley values for this massive task
Abstract:DNA profiles are made up from multiple series of electrophoretic signal measuring fluorescence over time. Typically, human DNA analysts 'read' DNA profiles using their experience to distinguish instrument noise, artefactual signal, and signal corresponding to DNA fragments of interest. Recent work has developed an artificial neural network, ANN, to carry out the task of classifying fluorescence types into categories in DNA profile electrophoretic signal. But the creation of the necessarily large amount of labelled training data for the ANN is time consuming and expensive, and a limiting factor in the ability to robustly train the ANN. If realistic, prelabelled, training data could be simulated then this would remove the barrier to training an ANN with high efficacy. Here we develop a generative adversarial network, GAN, modified from the pix2pix GAN to achieve this task. With 1078 DNA profiles we train the GAN and achieve the ability to simulate DNA profile information, and then use the generator from the GAN as a 'realism filter' that applies the noise and artefact elements exhibited in typical electrophoretic signal.
Abstract:For neurological disorders and diseases, functional and anatomical connectomes of the human brain can be used to better inform targeted interventions and treatment strategies. Functional magnetic resonance imaging (fMRI) is a non-invasive neuroimaging technique that captures spatio-temporal brain function through blood flow over time. FMRI can be used to study the functional connectome through the functional connectivity matrix; that is, Pearson's correlation matrix between time series from the regions of interest of an fMRI image. One approach to analysing functional connectivity is using partial least squares (PLS), a multivariate regression technique designed for high-dimensional predictor data. However, analysing functional connectivity with PLS ignores a key property of the functional connectivity matrix; namely, these matrices are positive definite. To account for this, we introduce a generalisation of PLS to Riemannian manifolds, called R-PLS, and apply it to symmetric positive definite matrices with the affine invariant geometry. We apply R-PLS to two functional imaging datasets: COBRE, which investigates functional differences between schizophrenic patients and healthy controls, and; ABIDE, which compares people with autism spectrum disorder and neurotypical controls. Using the variable importance in the projection statistic on the results of R-PLS, we identify key functional connections in each dataset that are well represented in the literature. Given the generality of R-PLS, this method has potential to open up new avenues for multi-model imaging analysis linking structural and functional connectomics.