Abstract:The application of Shapley values to high-dimensional, time-series-like data is computationally challenging - and sometimes impossible. For $N$ inputs the problem is $2^N$ hard. In image processing, clusters of pixels, referred to as superpixels, are used to streamline computations. This research presents an efficient solution for time-seres-like data that adapts the idea of superpixels for Shapley value computation. Motivated by a forensic DNA classification example, the method is applied to multivariate time-series-like data whose features have been classified by a convolutional neural network (CNN). In DNA processing, it is important to identify alleles from the background noise created by DNA extraction and processing. A single DNA profile has $31,200$ scan points to classify, and the classification decisions must be defensible in a court of law. This means that classification is routinely performed by human readers - a monumental and time consuming process. The application of a CNN with fast computation of meaningful Shapley values provides a potential alternative to the classification. This research demonstrates the realistic, accurate and fast computation of Shapley values for this massive task
Abstract:DNA profiles are made up from multiple series of electrophoretic signal measuring fluorescence over time. Typically, human DNA analysts 'read' DNA profiles using their experience to distinguish instrument noise, artefactual signal, and signal corresponding to DNA fragments of interest. Recent work has developed an artificial neural network, ANN, to carry out the task of classifying fluorescence types into categories in DNA profile electrophoretic signal. But the creation of the necessarily large amount of labelled training data for the ANN is time consuming and expensive, and a limiting factor in the ability to robustly train the ANN. If realistic, prelabelled, training data could be simulated then this would remove the barrier to training an ANN with high efficacy. Here we develop a generative adversarial network, GAN, modified from the pix2pix GAN to achieve this task. With 1078 DNA profiles we train the GAN and achieve the ability to simulate DNA profile information, and then use the generator from the GAN as a 'realism filter' that applies the noise and artefact elements exhibited in typical electrophoretic signal.