Abstract:The rise of Large Language Models (LLMs) has revolutionized our comprehension of intelligence bringing us closer to Artificial Intelligence. Since their introduction, researchers have actively explored the applications of LLMs across diverse fields, significantly elevating capabilities. Cybersecurity, traditionally resistant to data-driven solutions and slow to embrace machine learning, stands out as a domain. This study examines the existing literature, providing a thorough characterization of both defensive and adversarial applications of LLMs within the realm of cybersecurity. Our review not only surveys and categorizes the current landscape but also identifies critical research gaps. By evaluating both offensive and defensive applications, we aim to provide a holistic understanding of the potential risks and opportunities associated with LLM-driven cybersecurity.
Abstract:In this paper, we propose a destination-aware adaptive traffic flow rule aggregation (DATA) mechanism for facilitating traffic flow monitoring in SDN-based networks. This method adapts the number of flow table entries in SDN switches according to the level of detail of traffic flow information that other mechanisms (e.g. for traffic engineering, traffic monitoring, intrusion detection) require. It also prevents performance degradation of the SDN switches by keeping the number of flow table entries well below a critical level. This level is not preset as a hard threshold but learned during operation by using a machine-learning based algorithm. The DATA method is implemented within a RESTful application (DATA App) which monitors and analyzes the ongoing network traffic and provides instructions to the SDN controller to adapt the traffic flow matching strategies accordingly. A thorough performance evaluation of DATA is conducted in an SDN emulation environment. The results show that---compared to the default behavior of common SDN controllers---the proposed DATA approach yields significant SDN switch performance improvements while still providing detailed traffic flow information on demand.