Abstract:Hyperdimensional computing (HDC) is a novel computational paradigm that operates on long-dimensional vectors known as hypervectors. The hypervectors are constructed as long bit-streams and form the basic building blocks of HDC systems. In HDC, hypervectors are generated from scalar values without taking their bit significance into consideration. HDC has been shown to be efficient and robust in various data processing applications, including computer vision tasks. To construct HDC models for vision applications, the current state-of-the-art practice utilizes two parameters for data encoding: pixel intensity and pixel position. However, the intensity and position information embedded in high-dimensional vectors are generally not generated dynamically in the HDC models. Consequently, the optimal design of hypervectors with high model accuracy requires powerful computing platforms for training. A more efficient approach to generating hypervectors is to create them dynamically during the training phase, which results in accurate, low-cost, and highly performable vectors. To this aim, we use low-discrepancy sequences to generate intensity hypervectors only, while avoiding position hypervectors. By doing so, the multiplication step in vector encoding is eliminated, resulting in a power-efficient HDC system. For the first time in the literature, our proposed approach employs lightweight vector generators utilizing unary bit-streams for efficient encoding of data instead of using conventional comparator-based generators.
Abstract:Hyperdimensional computing (HDC) is an emerging computing paradigm that imitates the brain's structure to offer a powerful and efficient processing and learning model. In HDC, the data are encoded with long vectors, called hypervectors, typically with a length of 1K to 10K. The literature provides several encoding techniques to generate orthogonal or correlated hypervectors, depending on the intended application. The existing surveys in the literature often focus on the overall aspects of HDC systems, including system inputs, primary computations, and final outputs. However, this study takes a more specific approach. It zeroes in on the HDC system input and the generation of hypervectors, directly influencing the hypervector encoding process. This survey brings together various methods for hypervector generation from different studies and explores the limitations, challenges, and potential benefits they entail. Through a comprehensive exploration of this survey, readers will acquire a profound understanding of various encoding types in HDC and gain insights into the intricate process of hypervector generation for diverse applications.