Abstract:Multilayer perceptrons (MLP), or fully connected artificial neural networks, are known for performing vector-matrix multiplications using learnable weight matrices; however, their practical application in many machine learning tasks, especially in computer vision, can be limited due to the high dimensionality of input-output pairs at each layer. To improve efficiency, convolutional operators have been utilized to facilitate weight sharing and local connections, yet they are constrained by limited receptive fields. In this paper, we introduce Multiscale Tensor Summation (MTS) Factorization, a novel neural network operator that implements tensor summation at multiple scales, where each tensor to be summed is obtained through Tucker-decomposition-like mode products. Unlike other tensor decomposition methods in the literature, MTS is not introduced as a network compression tool; instead, as a new backbone neural layer. MTS not only reduces the number of parameters required while enhancing the efficiency of weight optimization compared to traditional dense layers (i.e., unfactorized weight matrices in MLP layers), but it also demonstrates clear advantages over convolutional layers. The proof-of-concept experimental comparison of the proposed MTS networks with MLPs and Convolutional Neural Networks (CNNs) demonstrates their effectiveness across various tasks, such as classification, compression, and signal restoration. Additionally, when integrated with modern non-linear units such as the multi-head gate (MHG), also introduced in this study, the corresponding neural network, MTSNet, demonstrates a more favorable complexity-performance tradeoff compared to state-of-the-art transformers in various computer vision applications. The software implementation of the MTS layer and the corresponding MTS-based networks, MTSNets, is shared at https://github.com/mehmetyamac/MTSNet.
Abstract:This paper proposes a low-cost and highly accurate ECG-monitoring system intended for personalized early arrhythmia detection for wearable mobile sensors. Earlier supervised approaches for personalized ECG monitoring require both abnormal and normal heartbeats for the training of the dedicated classifier. However, in a real-world scenario where the personalized algorithm is embedded in a wearable device, such training data is not available for healthy people with no cardiac disorder history. In this study, (i) we propose a null space analysis on the healthy signal space obtained via sparse dictionary learning, and investigate how a simple null space projection or alternatively regularized least squares-based classification methods can reduce the computational complexity, without sacrificing the detection accuracy, when compared to sparse representation-based classification. (ii) Then we introduce a sparse representation-based domain adaptation technique in order to project other existing users' abnormal and normal signals onto the new user's signal space, enabling us to train the dedicated classifier without having any abnormal heartbeat of the new user. Therefore, zero-shot learning can be achieved without the need for synthetic abnormal heartbeat generation. An extensive set of experiments performed on the benchmark MIT-BIH ECG dataset shows that when this domain adaptation-based training data generator is used with a simple 1-D CNN classifier, the method outperforms the prior work by a significant margin. (iii) Then, by combining (i) and (ii), we propose an ensemble classifier that further improves the performance. This approach for zero-shot arrhythmia detection achieves an average accuracy level of 98.2% and an F1-Score of 92.8%. Finally, a personalized energy-efficient ECG monitoring scheme is proposed using the above-mentioned innovations.