Abstract:Automatic prediction of age and gender from face images has drawn a lot of attention recently, due it is wide applications in various facial analysis problems. However, due to the large intra-class variation of face images (such as variation in lighting, pose, scale, occlusion), the existing models are still behind the desired accuracy level, which is necessary for the use of these models in real-world applications. In this work, we propose a deep learning framework, based on the ensemble of attentional and residual convolutional networks, to predict gender and age group of facial images with high accuracy rate. Using attention mechanism enables our model to focus on the important and informative parts of the face, which can help it to make a more accurate prediction. We train our model in a multi-task learning fashion, and augment the feature embedding of the age classifier, with the predicted gender, and show that doing so can further increase the accuracy of age prediction. Our model is trained on a popular face age and gender dataset, and achieved promising results. Through visualization of the attention maps of the train model, we show that our model has learned to become sensitive to the right regions of the face.
Abstract:Generating realistic palmprint (more generally biometric) images has always been an interesting and, at the same time, challenging problem. Classical statistical models fail to generate realistic-looking palmprint images, as they are not powerful enough to capture the complicated texture representation of palmprint images. In this work, we present a deep learning framework based on generative adversarial networks (GAN), which is able to generate realistic palmprint images. To help the model learn more realistic images, we proposed to add a suitable regularization to the loss function, which imposes the line connectivity of generated palmprint images. This is very desirable for palmprints, as the principal lines in palm are usually connected. We apply this framework to a popular palmprint databases, and generate images which look very realistic, and similar to the samples in this database. Through experimental results, we show that the generated palmprint images look very realistic, have a good diversity, and are able to capture different parts of the prior distribution. We also report the Frechet Inception distance (FID) of the proposed model, and show that our model is able to achieve really good quantitative performance in terms of FID score.