Abstract:Deep neural networks (DNN) have been widely used and play a major role in the field of computer vision and autonomous navigation. However, these DNNs are computationally complex and their deployment over resource-constrained platforms is difficult without additional optimizations and customization. In this manuscript, we describe an overview of DNN architecture and propose methods to reduce computational complexity in order to accelerate training and inference speeds to fit them on edge computing platforms with low computational resources.
Abstract:Genetic algorithms are modeled after the biological evolutionary processes that use natural selection to select the best species to survive. They are heuristics based and low cost to compute. Genetic algorithms use selection, crossover, and mutation to obtain a feasible solution to computational problems. In this paper, we describe our genetic optimization algorithms to a mission-critical and constraints-aware computation problem.
Abstract:Classical optimization algorithms in machine learning often take a long time to compute when applied to a multi-dimensional problem and require a huge amount of CPU and GPU resource. Quantum parallelism has a potential to speed up machine learning algorithms. We describe a generic mathematical model to leverage quantum parallelism to speed-up machine learning algorithms. We also apply quantum machine learning and quantum parallelism applied to a $3$-dimensional image that vary with time.
Abstract:In a resource-constrained, contested environment, computing resources need to be aware of possible size, weight, and power (SWaP) restrictions. SWaP-aware computational efficiency depends upon optimization of computational resources and intelligent time versus efficiency tradeoffs in decision making. In this paper we address the complexity of various optimization strategies related to low SWaP computing. Due to these restrictions, only a small subset of less complicated and fast computable algorithms can be used for tactical, adaptive computing.
Abstract:There is a subset of computational problems that are computable in polynomial time for which an existing algorithm may not complete due to a lack of high performance technology on a mission field. We define a subclass of deterministic polynomial time complexity class called mission class, as many polynomial problems are not computable in mission time. By focusing on such subclass of languages in the context for successful military applications, we also discuss their computational and communicational constraints. We investigate feasible (non)linear models that will minimize energy and maximize memory, efficiency, and computational power, and also provide an approximate solution obtained within a pre-determined length of computation time using limited resources so that an optimal solution to a language could be determined.