Abstract:Human behavior and interactions are profoundly influenced by visual stimuli present in their surroundings. This influence extends to various aspects of life, notably food consumption and selection. In our study, we employed various models to extract different attributes from the environmental images. Specifically, we identify five key attributes and employ an ensemble model IMVB7 based on five distinct models for some of their detection resulted 0.85 mark. In addition, we conducted surveys to discern patterns in food preferences in response to visual stimuli. Leveraging the insights gleaned from these surveys, we formulate recommendations using decision tree for dishes based on the amalgamation of identified attributes resulted IMVB7t 0.96 mark. This study serves as a foundational step, paving the way for further exploration of this interdisciplinary domain.
Abstract:Artificial Intelligence (AI) is rapidly integrating into various aspects of our daily lives, influencing decision-making processes in areas such as targeted advertising and matchmaking algorithms. As AI systems become increasingly sophisticated, ensuring their transparency and explainability becomes crucial. Functional transparency is a fundamental aspect of algorithmic decision-making systems, allowing stakeholders to comprehend the inner workings of these systems and enabling them to evaluate their fairness and accuracy. However, achieving functional transparency poses significant challenges that need to be addressed. In this paper, we propose a design for user-centered compliant-by-design transparency in transparent systems. We emphasize that the development of transparent and explainable AI systems is a complex and multidisciplinary endeavor, necessitating collaboration among researchers from diverse fields such as computer science, artificial intelligence, ethics, law, and social science. By providing a comprehensive understanding of the challenges associated with transparency in AI systems and proposing a user-centered design framework, we aim to facilitate the development of AI systems that are accountable, trustworthy, and aligned with societal values.