Abstract:Sentiment analysis for the Bengali language has attracted increasing research interest in recent years. However, progress remains constrained by the scarcity of large-scale and diverse annotated datasets. Although several Bengali sentiment and hate speech datasets are publicly available, most are limited in size or confined to a single domain, such as social media comments. Consequently, these resources are often insufficient for training modern deep learning based models, which require large volumes of heterogeneous data to learn robust and generalizable representations. In this work, we introduce BengaliSent140, a large-scale Bengali binary sentiment dataset constructed by consolidating seven existing Bengali text datasets into a unified corpus. To ensure consistency across sources, heterogeneous annotation schemes are systematically harmonized into a binary sentiment formulation with two classes: Not Hate (0) and Hate (1). The resulting dataset comprises 139,792 unique text samples, including 68,548 hate and 71,244 not-hate instances, yielding a relatively balanced class distribution. By integrating data from multiple sources and domains, BengaliSent140 offers broader linguistic and contextual coverage than existing Bengali sentiment datasets and provides a strong foundation for training and benchmarking deep learning models. Baseline experimental results are also reported to demonstrate the practical usability of the dataset. The dataset is publicly available at https://www.kaggle.com/datasets/akifislam/bengalisent140/
Abstract:The Internet of Things (IoT) and mobile technology have significantly transformed healthcare by enabling real-time monitoring and diagnosis of patients. Recognizing medical-related human activities (MRHA) is pivotal for healthcare systems, particularly for identifying actions that are critical to patient well-being. However, challenges such as high computational demands, low accuracy, and limited adaptability persist in Human Motion Recognition (HMR). While some studies have integrated HMR with IoT for real-time healthcare applications, limited research has focused on recognizing MRHA as essential for effective patient monitoring. This study proposes a novel HMR method for MRHA detection, leveraging multi-stage deep learning techniques integrated with IoT. The approach employs EfficientNet to extract optimized spatial features from skeleton frame sequences using seven Mobile Inverted Bottleneck Convolutions (MBConv) blocks, followed by ConvLSTM to capture spatio-temporal patterns. A classification module with global average pooling, a fully connected layer, and a dropout layer generates the final predictions. The model is evaluated on the NTU RGB+D 120 and HMDB51 datasets, focusing on MRHA, such as sneezing, falling, walking, sitting, etc. It achieves 94.85% accuracy for cross-subject evaluations and 96.45% for cross-view evaluations on NTU RGB+D 120, along with 89.00% accuracy on HMDB51. Additionally, the system integrates IoT capabilities using a Raspberry Pi and GSM module, delivering real-time alerts via Twilios SMS service to caregivers and patients. This scalable and efficient solution bridges the gap between HMR and IoT, advancing patient monitoring, improving healthcare outcomes, and reducing costs.