Abstract:This paper presents a curated list of 90 objects essential for the navigation of blind and low-vision (BLV) individuals, encompassing road, sidewalk, and indoor environments. We develop the initial list by analyzing 21 publicly available videos featuring BLV individuals navigating various settings. Then, we refine the list through feedback from a focus group study involving blind, low-vision, and sighted companions of BLV individuals. A subsequent analysis reveals that most contemporary datasets used to train recent computer vision models contain only a small subset of the objects in our proposed list. Furthermore, we provide detailed object labeling for these 90 objects across 31 video segments derived from the original 21 videos. Finally, we make the object list, the 21 videos, and object labeling in the 31 video segments publicly available. This paper aims to fill the existing gap and foster the development of more inclusive and effective navigation aids for the BLV community.
Abstract:In this thesis, we propose an approach to identity resolution across social media platforms using the topics, sentiments, and timings of the posts on the platforms. After collecting the public posts of around 5000 profiles from Disqus and Twitter, we analyze their posts to match their profiles across the two platforms. We pursue both temporal and non-temporal methods in our analysis. While neither approach proves definitively superior, the temporal approach generally performs better. We found that the temporal window size influences results more than the shifting amount. On the other hand, our sentiment analysis shows that the inclusion of sentiment makes little difference, probably due to flawed data extraction methods. We also experimented with a distance-based reward-and-punishment-focused scoring model, which achieved an accuracy of 24.198% and an average rank of 158.217 out of 2525 in our collected corpus. Future work includes refining sentiment analysis by evaluating sentiments per topic, extending temporal analysis with additional phases, and improving the scoring model through weight adjustments and modified rewards.
Abstract:This paper introduces a dataset for improving real-time object recognition systems to aid blind and low-vision (BLV) individuals in navigation tasks. The dataset comprises 21 videos of BLV individuals navigating outdoor spaces, and a taxonomy of 90 objects crucial for BLV navigation, refined through a focus group study. We also provide object labeling for the 90 objects across 31 video segments created from the 21 videos. A deeper analysis reveals that most contemporary datasets used in training computer vision models contain only a small subset of the taxonomy in our dataset. Preliminary evaluation of state-of-the-art computer vision models on our dataset highlights shortcomings in accurately detecting key objects relevant to BLV navigation, emphasizing the need for specialized datasets. We make our dataset publicly available, offering valuable resources for developing more inclusive navigation systems for BLV individuals.