Abstract:Large multimodal models (LMMs) are increasingly integrated into autonomous driving systems for user interaction. However, their limitations in fine-grained spatial reasoning pose challenges for system interpretability and user trust. We introduce Logic-RAG, a novel Retrieval-Augmented Generation (RAG) framework that improves LMMs' spatial understanding in driving scenarios. Logic-RAG constructs a dynamic knowledge base (KB) about object-object relationships in first-order logic (FOL) using a perception module, a query-to-logic embedder, and a logical inference engine. We evaluated Logic-RAG on visual-spatial queries using both synthetic and real-world driving videos. When using popular LMMs (GPT-4V, Claude 3.5) as proxies for an autonomous driving system, these models achieved only 55% accuracy on synthetic driving scenes and under 75% on real-world driving scenes. Augmenting them with Logic-RAG increased their accuracies to over 80% and 90%, respectively. An ablation study showed that even without logical inference, the fact-based context constructed by Logic-RAG alone improved accuracy by 15%. Logic-RAG is extensible: it allows seamless replacement of individual components with improved versions and enables domain experts to compose new knowledge in both FOL and natural language. In sum, Logic-RAG addresses critical spatial reasoning deficiencies in LMMs for autonomous driving applications. Code and data are available at https://github.com/Imran2205/LogicRAG.
Abstract:This paper presents a curated list of 90 objects essential for the navigation of blind and low-vision (BLV) individuals, encompassing road, sidewalk, and indoor environments. We develop the initial list by analyzing 21 publicly available videos featuring BLV individuals navigating various settings. Then, we refine the list through feedback from a focus group study involving blind, low-vision, and sighted companions of BLV individuals. A subsequent analysis reveals that most contemporary datasets used to train recent computer vision models contain only a small subset of the objects in our proposed list. Furthermore, we provide detailed object labeling for these 90 objects across 31 video segments derived from the original 21 videos. Finally, we make the object list, the 21 videos, and object labeling in the 31 video segments publicly available. This paper aims to fill the existing gap and foster the development of more inclusive and effective navigation aids for the BLV community.
Abstract:This paper introduces a dataset for improving real-time object recognition systems to aid blind and low-vision (BLV) individuals in navigation tasks. The dataset comprises 21 videos of BLV individuals navigating outdoor spaces, and a taxonomy of 90 objects crucial for BLV navigation, refined through a focus group study. We also provide object labeling for the 90 objects across 31 video segments created from the 21 videos. A deeper analysis reveals that most contemporary datasets used in training computer vision models contain only a small subset of the taxonomy in our dataset. Preliminary evaluation of state-of-the-art computer vision models on our dataset highlights shortcomings in accurately detecting key objects relevant to BLV navigation, emphasizing the need for specialized datasets. We make our dataset publicly available, offering valuable resources for developing more inclusive navigation systems for BLV individuals.