Abstract:The quantified measurement of facial expressiveness is crucial to analyze human affective behavior at scale. Unfortunately, methods for expressiveness quantification at the video frame-level are largely unexplored, unlike the study of discrete expression. In this work, we propose an algorithm that quantifies facial expressiveness using a bounded, continuous expressiveness score using multimodal facial features, such as action units (AUs), landmarks, head pose, and gaze. The proposed algorithm more heavily weights AUs with high intensities and large temporal changes. The proposed algorithm can compute the expressiveness in terms of discrete expression, and can be used to perform tasks including facial behavior tracking and subjectivity quantification in context. Our results on benchmark datasets show the proposed algorithm is effective in terms of capturing temporal changes and expressiveness, measuring subjective differences in context, and extracting useful insight.
Abstract:In this work, we address the importance of affect in automated pain assessment and the implications in real-world settings. To achieve this, we curate a new physiological dataset by merging the publicly available bioVid pain and emotion datasets. We then investigate pain level recognition on this dataset simulating participants' naturalistic affective behaviors. Our findings demonstrate that acknowledging affect in pain assessment is essential. We observe degradation in recognition performance when simulating the existence of affect to validate pain assessment models that do not account for it. Conversely, we observe a performance boost in recognition when we account for affect.
Abstract:The quantification of visual affect data (e.g. face images) is essential to build and monitor automated affect modeling systems efficiently. Considering this, this work proposes quantified facial Temporal-expressiveness Dynamics (TED) to quantify the expressiveness of human faces. The proposed algorithm leverages multimodal facial features by incorporating static and dynamic information to enable accurate measurements of facial expressiveness. We show that TED can be used for high-level tasks such as summarization of unstructured visual data, and expectation from and interpretation of automated affect recognition models. To evaluate the positive impact of using TED, a case study was conducted on spontaneous pain using the UNBC-McMaster spontaneous shoulder pain dataset. Experimental results show the efficacy of using TED for quantified affect analysis.