Abstract:The prediction accuracy of the deep neural networks (DNNs) after deployment at the edge can suffer with time due to shifts in the distribution of the new data. To improve robustness of DNNs, they must be able to update themselves to enhance their prediction accuracy. This adaptation at the resource-constrained edge is challenging as: (i) new labeled data may not be present; (ii) adaptation needs to be on device as connections to cloud may not be available; and (iii) the process must not only be fast but also memory- and energy-efficient. Recently, lightweight prediction-time unsupervised DNN adaptation techniques have been introduced that improve prediction accuracy of the models for noisy data by re-tuning the batch normalization (BN) parameters. This paper, for the first time, performs a comprehensive measurement study of such techniques to quantify their performance and energy on various edge devices as well as find bottlenecks and propose optimization opportunities. In particular, this study considers CIFAR-10-C image classification dataset with corruptions, three robust DNNs (ResNeXt, Wide-ResNet, ResNet-18), two BN adaptation algorithms (one that updates normalization statistics and the other that also optimizes transformation parameters), and three edge devices (FPGA, Raspberry-Pi, and Nvidia Xavier NX). We find that the approach that only updates the normalization parameters with Wide-ResNet, running on Xavier GPU, to be overall effective in terms of balancing multiple cost metrics. However, the adaptation overhead can still be significant (around 213 ms). The results strongly motivate the need for algorithm-hardware co-design for efficient on-device DNN adaptation.
Abstract:Laser-induced breakdown spectroscopy (LIBS) is a popular, fast elemental analysis technique used to determine the chemical composition of target samples, such as in industrial analysis of metals or in space exploration. Recently, there has been a rise in the use of machine learning (ML) techniques for LIBS data processing. However, ML for LIBS is challenging as: (i) the predictive models must be lightweight since they need to be deployed in highly resource-constrained and battery-operated portable LIBS systems; and (ii) since these systems can be remote, the models must be able to self-adapt to any domain shift in input distributions which could be due to the lack of different types of inputs in training data or dynamic environmental/sensor noise. This on-device retraining of model should not only be fast but also unsupervised due to the absence of new labeled data in remote LIBS systems. We introduce a lightweight multi-layer perceptron (MLP) model for LIBS that can be adapted on-device without requiring labels for new input data. It shows 89.3% average accuracy during data streaming, and up to 2.1% better accuracy compared to an MLP model that does not support adaptation. Finally, we also characterize the inference and retraining performance of our model on Google Pixel2 phone.