Abstract:The performance of mobile AI accelerators has been evolving rapidly in the past two years, nearly doubling with each new generation of SoCs. The current 4th generation of mobile NPUs is already approaching the results of CUDA-compatible Nvidia graphics cards presented not long ago, which together with the increased capabilities of mobile deep learning frameworks makes it possible to run complex and deep AI models on mobile devices. In this paper, we evaluate the performance and compare the results of all chipsets from Qualcomm, HiSilicon, Samsung, MediaTek and Unisoc that are providing hardware acceleration for AI inference. We also discuss the recent changes in the Android ML pipeline and provide an overview of the deployment of deep learning models on mobile devices. All numerical results provided in this paper can be found and are regularly updated on the official project website: http://ai-benchmark.com.
Abstract:Over the last years, the computational power of mobile devices such as smartphones and tablets has grown dramatically, reaching the level of desktop computers available not long ago. While standard smartphone apps are no longer a problem for them, there is still a group of tasks that can easily challenge even high-end devices, namely running artificial intelligence algorithms. In this paper, we present a study of the current state of deep learning in the Android ecosystem and describe available frameworks, programming models and the limitations of running AI on smartphones. We give an overview of the hardware acceleration resources available on four main mobile chipset platforms: Qualcomm, HiSilicon, MediaTek and Samsung. Additionally, we present the real-world performance results of different mobile SoCs collected with AI Benchmark that are covering all main existing hardware configurations.