Abstract:Heuristic functions are essential to the performance of tree search algorithms such as A*, where their accuracy and efficiency directly impact search outcomes. Traditionally, such heuristics are handcrafted, requiring significant expertise. Recent advances in large language models (LLMs) and evolutionary frameworks have opened the door to automating heuristic design. In this paper, we extend the Evolution of Heuristics (EoH) framework to investigate the automated generation of guiding heuristics for A* search. We introduce a novel domain-agnostic prompt augmentation strategy that includes the A* code into the prompt to leverage in-context learning, named Algorithmic - Contextual EoH (A-CEoH). To evaluate the effectiveness of A-CeoH, we study two problem domains: the Unit-Load Pre-Marshalling Problem (UPMP), a niche problem from warehouse logistics, and the classical sliding puzzle problem (SPP). Our computational experiments show that A-CEoH can significantly improve the quality of the generated heuristics and even outperform expert-designed heuristics.
Abstract:Combinatorial optimization problems often rely on heuristic algorithms to generate efficient solutions. However, the manual design of heuristics is resource-intensive and constrained by the designer's expertise. Recent advances in artificial intelligence, particularly large language models (LLMs), have demonstrated the potential to automate heuristic generation through evolutionary frameworks. Recent works focus only on well-known combinatorial optimization problems like the traveling salesman problem and online bin packing problem when designing constructive heuristics. This study investigates whether LLMs can effectively generate heuristics for niche, not yet broadly researched optimization problems, using the unit-load pre-marshalling problem as an example case. We propose the Contextual Evolution of Heuristics (CEoH) framework, an extension of the Evolution of Heuristics (EoH) framework, which incorporates problem-specific descriptions to enhance in-context learning during heuristic generation. Through computational experiments, we evaluate CEoH and EoH and compare the results. Results indicate that CEoH enables smaller LLMs to generate high-quality heuristics more consistently and even outperform larger models. Larger models demonstrate robust performance with or without contextualized prompts. The generated heuristics exhibit scalability to diverse instance configurations.