Abstract:Current state-of-the-art approaches to text classification typically leverage BERT-style Transformer models with a softmax classifier, jointly fine-tuned to predict class labels of a target task. In this paper, we instead propose an alternative training objective in which we learn task-specific embeddings of text: our proposed objective learns embeddings such that all texts that share the same target class label should be close together in the embedding space, while all others should be far apart. This allows us to replace the softmax classifier with a more interpretable k-nearest-neighbor classification approach. In a series of experiments, we show that this yields a number of interesting benefits: (1) The resulting order induced by distances in the embedding space can be used to directly explain classification decisions. (2) This facilitates qualitative inspection of the training data, helping us to better understand the problem space and identify labelling quality issues. (3) The learned distances to some degree generalize to unseen classes, allowing us to incrementally add new classes without retraining the model. We present extensive experiments which show that the benefits of ante-hoc explainability and incremental learning come at no cost in overall classification accuracy, thus pointing to practical applicability of our proposed approach.
Abstract:Ensuring safety of the products offered to the customers is of paramount importance to any e- commerce platform. Despite stringent quality and safety checking of products listed on these platforms, occasionally customers might receive a product that can pose a safety issue arising out of its use. In this paper, we present an innovative mechanism of how a large scale multinational e-commerce platform, Zalando, uses Natural Language Processing techniques to assist timely investigation of the potentially unsafe products mined directly from customer written claims in unstructured plain text. We systematically describe the types of safety issues that concern Zalando customers. We demonstrate how we map this core business problem into a supervised text classification problem with highly imbalanced, noisy, multilingual data in a AI-in-the-loop setup with a focus on Key Performance Indicator (KPI) driven evaluation. Finally, we present detailed ablation studies to show a comprehensive comparison between different classification techniques. We conclude the work with how this NLP model was deployed.