Abstract:Deep neural networks have been successfully applied to problems such as image segmentation, image super-resolution, coloration and image inpainting. In this work we propose the use of convolutional neural networks (CNN) for image inpainting of large regions in high-resolution textures. Due to limited computational resources processing high-resolution images with neural networks is still an open problem. Existing methods separate inpainting of global structure and the transfer of details, which leads to blurry results and loss of global coherence in the detail transfer step. Based on advances in texture synthesis using CNNs we propose patch-based image inpainting by a CNN that is able to optimize for global as well as detail texture statistics. Our method is capable of filling large inpainting regions, oftentimes exceeding the quality of comparable methods for high-resolution images. For reference patch look-up we propose to use the same summary statistics that are used in the inpainting process.
Abstract:The pel-recursive computation of 2-D optical flow has been extensively studied in computer vision to estimate motion from image sequences, but it still raises a wealth of issues, such as the treatment of outliers, motion discontinuities and occlusion. It relies on spatio-temporal brightness variations due to motion. Our proposed adaptive regularized approach deals with these issues within a common framework. It relies on the use of a data-driven technique called Mixed Norm (MN) to estimate the best motion vector for a given pixel. In our model, various types of noise can be handled, representing different sources of error. The motion vector estimation takes into consideration local image properties and it results from the minimization of a mixed norm functional with a regularization parameter depending on the kurtosis. This parameter determines the relative importance of the fourth norm and makes the functional convex. The main advantage of the developed procedure is that no knowledge of the noise distribution is necessary. Experiments indicate that this approach provides robust estimates of the optical flow.