Abstract:Generative Foundation Models (GFMs) have produced synthetic data with remarkable quality in modalities such as images and text. However, applying GFMs to tabular data poses significant challenges due to the inherent heterogeneity of table features. Existing cross-table learning frameworks are hindered by the absence of both a generative model backbone and a decoding mechanism for heterogeneous feature values. To overcome these limitations, we introduce the Cross-Table Synthesizer (CTSyn), a diffusion-based foundational model tailored for tabular data generation. CTSyn introduces three major components: an aggregator that consolidates heterogeneous tables into a unified latent space; a conditional latent diffusion model for sampling from this space; and type-specific decoders that reconstruct values of varied data types from sampled latent vectors. Extensive testing on real-world datasets reveals that CTSyn not only significantly outperforms existing table synthesizers in utility and diversity, but also uniquely enhances performances of downstream machine learning beyond what is achievable with real data, thus establishing a new paradigm for synthetic data generation.
Abstract:Recommender systems, which offer personalized suggestions to users, power many of today's social media, e-commerce and entertainment. However, these systems have been known to intellectually isolate users from a variety of perspectives, or cause filter bubbles. In our work, we characterize and mitigate this filter bubble effect. We do so by classifying various datapoints based on their user-item interaction history and calculating the influences of the classified categories on each other using the well known TracIn method. Finally, we mitigate this filter bubble effect without compromising accuracy by carefully retraining our recommender system.