Abstract:We present a postprocessing layer for deformable image registration to make a registration field more diffeomorphic by encouraging Jacobians of the transformation to be positive. Diffeomorphic image registration is important for medical imaging studies because of the properties like invertibility, smoothness of the transformation, and topology preservation/non-folding of the grid. Violation of these properties can lead to destruction of the neighbourhood and the connectivity of anatomical structures during image registration. Most of the recent deep learning methods do not explicitly address this folding problem and try to solve it with a smoothness regularization on the registration field. In this paper, we propose a differentiable layer, which takes any registration field as its input, computes exponential of the Jacobian matrices of the input and reconstructs a new registration field from the exponentiated Jacobian matrices using Poisson reconstruction. Our proposed Poisson reconstruction loss enforces positive Jacobians for the final registration field. Thus, our method acts as a post-processing layer without any learnable parameters of its own and can be placed at the end of any deep learning pipeline to form an end-to-end learnable framework. We show the effectiveness of our proposed method for a popular deep learning registration method Voxelmorph and evaluate it with a dataset containing 3D brain MRI scans. Our results show that our post-processing can effectively decrease the number of non-positive Jacobians by a significant amount without any noticeable deterioration of the registration accuracy, thus making the registration field more diffeomorphic. Our code is available online at https://github.com/Soumyadeep-Pal/Diffeomorphic-Image-Registration-Postprocess.
Abstract:Autograd-based software packages have recently renewed interest in image registration using homography and other geometric models by gradient descent and optimization, e.g., AirLab and DRMIME. In this work, we emphasize on using complex matrix exponential (CME) over real matrix exponential to compute transformation matrices. CME is theoretically more suitable and practically provides faster convergence as our experiments show. Further, we demonstrate that the use of an ordinary differential equation (ODE) as an optimizable dynamical system can adapt the transformation matrix more accurately to the multi-resolution Gaussian pyramid for image registration. Our experiments include four publicly available benchmark datasets, two of them 2D and the other two being 3D. Experiments demonstrate that our proposed method yields significantly better registration compared to a number of off-the-shelf, popular, state-of-the-art image registration toolboxes.
Abstract:In this work, we present a novel unsupervised image registration algorithm. It is differentiable end-to-end and can be used for both multi-modal and mono-modal registration. This is done using mutual information (MI) as a metric. The novelty here is that rather than using traditional ways of approximating MI, we use a neural estimator called MINE and supplement it with matrix exponential for transformation matrix computation. This leads to improved results as compared to the standard algorithms available out-of-the-box in state-of-the-art image registration toolboxes.