Abstract:Monitoring forest dynamics at an individual tree scale is essential for accurately assessing ecosystem responses to climate change, yet traditional methods relying on field-based forest inventories are labor-intensive and limited in spatial coverage. Advances in remote sensing using drone-acquired RGB imagery combined with deep learning models have promised precise individual tree crown (ITC) segmentation; however, existing methods are frequently validated against human-annotated images, lacking rigorous independent ground truth. In this study, we generate high-fidelity validation labels from co-located Terrestrial Laser Scanning (TLS) data for drone imagery of mixed unmanaged boreal and Mediterranean forests. We evaluate the performance of two widely used deep learning ITC segmentation models - DeepForest (RetinaNet) and Detectree2 (Mask R-CNN) - on these data, and compare to performance on further Mediterranean forest data labelled manually. When validated against TLS-derived ground truth from Mediterranean forests, model performance decreased significantly compared to assessment based on hand-labelled from an ecologically similar site (AP50: 0.094 vs. 0.670). Restricting evaluation to only canopy trees shrank this gap considerably (Canopy AP50: 0.365), although performance was still far lower than on similar hand-labelled data. Models also performed poorly on boreal forest data (AP50: 0.142), although again increasing when evaluated on canopy trees only (Canopy AP50: 0.308). Both models showed very poor localisation accuracy at stricter IoU thresholds, even when restricted to canopy trees (Max AP75: 0.051). Similar results have been observed in studies using aerial LiDAR data, suggesting fundamental limitations in aerial-based segmentation approaches in closed canopy forests.
Abstract:Proximally-sensed laser scanning offers significant potential for automated forest data capture, but challenges remain in automatically identifying tree species without additional ground data. Deep learning (DL) shows promise for automation, yet progress is slowed by the lack of large, diverse, openly available labeled datasets of single tree point clouds. This has impacted the robustness of DL models and the ability to establish best practices for species classification. To overcome these challenges, the FOR-species20K benchmark dataset was created, comprising over 20,000 tree point clouds from 33 species, captured using terrestrial (TLS), mobile (MLS), and drone laser scanning (ULS) across various European forests, with some data from other regions. This dataset enables the benchmarking of DL models for tree species classification, including both point cloud-based (PointNet++, MinkNet, MLP-Mixer, DGCNNs) and multi-view image-based methods (SimpleView, DetailView, YOLOv5). 2D image-based models generally performed better (average OA = 0.77) than 3D point cloud-based models (average OA = 0.72), with consistent results across different scanning platforms and sensors. The top model, DetailView, was particularly robust, handling data imbalances well and generalizing effectively across tree sizes. The FOR-species20K dataset, available at https://zenodo.org/records/13255198, is a key resource for developing and benchmarking DL models for tree species classification using laser scanning data, providing a foundation for future advancements in the field.