Abstract:Many studies regarding the vasculature of biological tissues involve the segmentation of the blood vessels in a sample followed by the creation of a graph structure to model the vasculature. The graph is then used to extract relevant vascular properties. Small segmentation errors can lead to largely distinct connectivity patterns and a high degree of variability of the extracted properties. Nevertheless, global metrics such as Dice, precision, and recall are commonly applied for measuring the performance of blood vessel segmentation algorithms. These metrics might conceal important information about the accuracy at specific regions of a sample. To tackle this issue, we propose a local vessel salience (LVS) index to quantify the expected difficulty in segmenting specific blood vessel segments. The LVS index is calculated for each vessel pixel by comparing the local intensity of the vessel with the image background around the pixel. The index is then used for defining a new accuracy metric called low-salience recall (LSRecall), which quantifies the performance of segmentation algorithms on blood vessel segments having low salience. The perspective provided by the LVS index is used to define a data augmentation procedure that can be used to improve the segmentation performance of convolutional neural networks. We show that segmentation algorithms having high Dice and recall values can display very low LSRecall values, which reveals systematic errors of these algorithms for vessels having low salience. The proposed data augmentation procedure is able to improve the LSRecall of some samples by as much as 25%. The developed methodology opens up new possibilities for comparing the performance of segmentation algorithms regarding hard-to-detect blood vessels as well as their capabilities for vascular topology preservation.
Abstract:Creating a dataset for training supervised machine learning algorithms can be a demanding task. This is especially true for medical image segmentation since this task usually requires one or more specialists for image annotation, and creating ground truth labels for just a single image can take up to several hours. In addition, it is paramount that the annotated samples represent well the different conditions that might affect the imaged tissue as well as possible changes in the image acquisition process. This can only be achieved by considering samples that are typical in the dataset as well as atypical, or even outlier, samples. We introduce a new sampling methodology for selecting relevant images from a larger non-annotated dataset in a way that evenly considers both prototypical as well as atypical samples. The methodology involves the generation of a uniform grid from a feature space representing the samples, which is then used for randomly drawing relevant images. The selected images provide a uniform cover of the original dataset, and thus define a heterogeneous set of images that can be annotated and used for training supervised segmentation algorithms. We provide a case example by creating a dataset containing a representative set of blood vessel microscopy images selected from a larger dataset containing thousands of images.