Abstract:Many studies regarding the vasculature of biological tissues involve the segmentation of the blood vessels in a sample followed by the creation of a graph structure to model the vasculature. The graph is then used to extract relevant vascular properties. Small segmentation errors can lead to largely distinct connectivity patterns and a high degree of variability of the extracted properties. Nevertheless, global metrics such as Dice, precision, and recall are commonly applied for measuring the performance of blood vessel segmentation algorithms. These metrics might conceal important information about the accuracy at specific regions of a sample. To tackle this issue, we propose a local vessel salience (LVS) index to quantify the expected difficulty in segmenting specific blood vessel segments. The LVS index is calculated for each vessel pixel by comparing the local intensity of the vessel with the image background around the pixel. The index is then used for defining a new accuracy metric called low-salience recall (LSRecall), which quantifies the performance of segmentation algorithms on blood vessel segments having low salience. The perspective provided by the LVS index is used to define a data augmentation procedure that can be used to improve the segmentation performance of convolutional neural networks. We show that segmentation algorithms having high Dice and recall values can display very low LSRecall values, which reveals systematic errors of these algorithms for vessels having low salience. The proposed data augmentation procedure is able to improve the LSRecall of some samples by as much as 25%. The developed methodology opens up new possibilities for comparing the performance of segmentation algorithms regarding hard-to-detect blood vessels as well as their capabilities for vascular topology preservation.