Abstract:Pedestrian path prediction is an essential topic in computer vision and video understanding. Having insight into the movement of pedestrians is crucial for ensuring safe operation in a variety of applications including autonomous vehicles, social robots, and environmental monitoring. Current works in this area utilize complex generative or recurrent methods to capture many possible futures. However, despite the inherent real-time nature of predicting future paths, little work has been done to explore accurate and computationally efficient approaches for this task. To this end, we propose a convolutional approach for real-time pedestrian path prediction, CARPe. It utilizes a variation of Graph Isomorphism Networks in combination with an agile convolutional neural network design to form a fast and accurate path prediction approach. Notable results in both inference speed and prediction accuracy are achieved, improving FPS by at least 8x in comparison to current state-of-the-art methods while delivering competitive accuracy on well-known path prediction datasets.
Abstract:This article presents REVAMP$^2$T, Real-time Edge Video Analytics for Multi-camera Privacy-aware Pedestrian Tracking, as an integrated end-to-end IoT system for privacy-built-in decentralized situational awareness. REVAMP$^2$T presents novel algorithmic and system constructs to push deep learning and video analytics next to IoT devices (i.e. video cameras). On the algorithm side, REVAMP$^2$T proposes a unified integrated computer vision pipeline for detection, re-identification, and tracking across multiple cameras without the need for storing the streaming data. At the same time, it avoids facial recognition, and tracks and re-identifies pedestrians based on their key features at runtime. On the IoT system side, REVAMP$^2$T provides infrastructure to maximize hardware utilization on the edge, orchestrates global communications, and provides system-wide re-identification, without the use of personally identifiable information, for a distributed IoT network. For the results and evaluation, this article also proposes a new metric, Accuracy$\cdot$Efficiency (\AE), for holistic evaluation of IoT systems for real-time video analytics based on accuracy, performance, and power efficiency. REVAMP$^2$T outperforms current state-of-the-art by as much as thirteen-fold \AE~improvement.