Abstract:Industry uses various solvents in the processes of refrigeration and ventilation. Among them, the Ionic liquids (ILs) as the relatively new solvents, are known for their proven eco-friendly characteristics. In this research, a comprehensive literature review was carried out to deliver an insight into the ILs and the prediction models used for estimating the ammonia solubility in ILs. Furthermore, a number of advanced machine learning methods, i.e. multilayer perceptron (MLP) and a combination of particle swarm optimization (PSO) and adaptive neuro-fuzzy inference system (ANFIS) models are used to estimate the solubility of ammonia in various ionic liquids. Affecting parameters were molecular weight, critical temperature and pressure of ILs. Furthermore, the salability is also predicted using the two-equation of states. Down the line, some comparisons were drawn between experimental and modeling results which is rarely done. The study shows that the equations of states are not able estimate the solubility of ammonia accurately, by contrast, artificial intelligence methods have produced promising results.
Abstract:Accurate prediction of mercury content emitted from fossil fueled power stations is of utmost important for environmental pollution assessment and hazard mitigation. In this paper, mercury content in the output gas of power stations boilers was predicted using adaptive neuro fuzzy inference system method integrated with particle swarm optimization. The input parameters of the model include coal characteristics and the operational parameters of the boilers. The dataset has been collected from a number of power plants and employed to educate and examine the proposed model. To evaluate the performance of the proposed ANFIS PSO model the statistical meter of MARE was implemented. Furthermore, relative errors between acquired data and predicted values presented, which confirm the accuracy of the model to deal nonlinearity and representing the dependency of flue gas mercury content into the specifications of coal and the boiler type.