Abstract:Multibiometrics, which uses multiple biometric traits to improve recognition performance instead of using only one biometric trait to authenticate individuals, has been investigated. Previous studies have combined individually acquired biometric traits or have not fully considered the convenience of the system.Focusing on a single face image, we propose a novel multibiometric method that combines five biometric traits, i.e., face, iris, periocular, nose, eyebrow, that can be extracted from a single face image. The proposed method does not sacrifice the convenience of biometrics since only a single face image is used as input.Through a variety of experiments using the CASIA Iris Distance database, we demonstrate the effectiveness of the proposed multibiometrics method.
Abstract:Demographic bias is one of the major challenges for face recognition systems. The majority of existing studies on demographic biases are heavily dependent on specific demographic groups or demographic classifier, making it difficult to address performance for unrecognised groups. This paper introduces ``LabellessFace'', a novel framework that improves demographic bias in face recognition without requiring demographic group labeling typically required for fairness considerations. We propose a novel fairness enhancement metric called the class favoritism level, which assesses the extent of favoritism towards specific classes across the dataset. Leveraging this metric, we introduce the fair class margin penalty, an extension of existing margin-based metric learning. This method dynamically adjusts learning parameters based on class favoritism levels, promoting fairness across all attributes. By treating each class as an individual in facial recognition systems, we facilitate learning that minimizes biases in authentication accuracy among individuals. Comprehensive experiments have demonstrated that our proposed method is effective for enhancing fairness while maintaining authentication accuracy.
Abstract:With the growth of image on the web, research on hashing which enables high-speed image retrieval has been actively studied. In recent years, various hashing methods based on deep neural networks have been proposed and achieved higher precision than the other hashing methods. In these methods, multiple losses for hash codes and the parameters of neural networks are defined. They generate hash codes that minimize the weighted sum of the losses. Therefore, an expert has to tune the weights for the losses heuristically, and the probabilistic optimality of the loss function cannot be explained. In order to generate explainable hash codes without weight tuning, we theoretically derive a single loss function with no hyperparameters for the hash code from the probability distribution of the images. By generating hash codes that minimize this loss function, highly accurate image retrieval with probabilistic optimality is performed. We evaluate the performance of hashing using MNIST, CIFAR-10, SVHN and show that the proposed method outperforms the state-of-the-art hashing methods.