Abstract:With the advancements of transformer-based architectures, we observe the rise of natural language preprocessing (NLPre) tools capable of solving preliminary NLP tasks (e.g. tokenisation, part-of-speech tagging, dependency parsing, or morphological analysis) without any external linguistic guidance. It is arduous to compare novel solutions to well-entrenched preprocessing toolkits, relying on rule-based morphological analysers or dictionaries. Aware of the shortcomings of existing NLPre evaluation approaches, we investigate a novel method of reliable and fair evaluation and performance reporting. Inspired by the GLUE benchmark, the proposed language-centric benchmarking system enables comprehensive ongoing evaluation of multiple NLPre tools, while credibly tracking their performance. The prototype application is configured for Polish and integrated with the thoroughly assembled NLPre-PL benchmark. Based on this benchmark, we conduct an extensive evaluation of a variety of Polish NLPre systems. To facilitate the construction of benchmarking environments for other languages, e.g. NLPre-GA for Irish or NLPre-ZH for Chinese, we ensure full customization of the publicly released source code of the benchmarking system. The links to all the resources (deployed platforms, source code, trained models, datasets etc.) can be found on the project website: https://sites.google.com/view/nlpre-benchmark.
Abstract:We present a novel deep learning method for estimating time-dependent parameters in Markov processes through discrete sampling. Departing from conventional machine learning, our approach reframes parameter approximation as an optimization problem using the maximum likelihood approach. Experimental validation focuses on parameter estimation in multivariate regression and stochastic differential equations (SDEs). Theoretical results show that the real solution is close to SDE with parameters approximated using our neural network-derived under specific conditions. Our work contributes to SDE-based model parameter estimation, offering a versatile tool for diverse fields.