Abstract:Autonomous robot navigation can be particularly demanding, especially when the surrounding environment is not known and safety of the robot is crucial. This work relates to the synthesis of Control Barrier Functions (CBFs) through data for safe navigation in unknown environments. A novel methodology to jointly learn CBFs and corresponding safe controllers, in simulation, inspired by the State Dependent Riccati Equation (SDRE) is proposed. The CBF is used to obtain admissible commands from any nominal, possibly unsafe controller. An approach to apply the CBF inside a safety filter without the need for a consistent map or position estimate is developed. Subsequently, the resulting reactive safety filter is deployed on a multirotor platform integrating a LiDAR sensor both in simulation and real-world experiments.
Abstract:This paper introduces a Nonlinear Model Predictive Control (N-MPC) framework exploiting a Deep Neural Network for processing onboard-captured depth images for collision avoidance in trajectory-tracking tasks with UAVs. The network is trained on simulated depth images to output a collision score for queried 3D points within the sensor field of view. Then, this network is translated into an algebraic symbolic equation and included in the N-MPC, explicitly constraining predicted positions to be collision-free throughout the receding horizon. The N-MPC achieves real time control of a UAV with a control frequency of 100Hz. The proposed framework is validated through statistical analysis of the collision classifier network, as well as Gazebo simulations and real experiments to assess the resulting capabilities of the N-MPC to effectively avoid collisions in cluttered environments. The associated code is released open-source along with the training images.