Abstract:This paper investigates dual sourcing problems with supply mode dependent failure rates, particularly relevant in managing spare parts for downtime-critical assets. To enhance resilience, businesses increasingly adopt dual sourcing strategies using both conventional and additive manufacturing techniques. This paper explores how these strategies can optimise sourcing by addressing variations in part properties and failure rates. A significant challenge is the distinct failure characteristics of parts produced by these methods, which influence future demand. To tackle this, we propose a new iterative heuristic and several reinforcement learning techniques combined with an endogenous parameterised learning (EPL) approach. This EPL approach - compatible with any learning method - allows a single policy to handle various input parameters for multiple items. In a stylised setting, our best policy achieves an average optimality gap of 0.4%. In a case study within the energy sector, our policies outperform the baseline in 91.1% of instances, yielding average cost savings up to 22.6%.
Abstract:Humanitarian logistics operations face increasing difficulties due to rising demands for aid in disaster areas. This paper investigates the dynamic allocation of scarce relief supplies across multiple affected districts over time. It introduces a novel stochastic dynamic post-disaster inventory allocation problem with trucks and unmanned aerial vehicles delivering relief goods under uncertain supply and demand. The relevance of this humanitarian logistics problem lies in the importance of considering the inter-temporal social impact of deliveries. We achieve this by incorporating deprivation costs when allocating scarce supplies. Furthermore, we consider the inherent uncertainties of disaster areas and the potential use of cargo UAVs to enhance operational efficiency. This study proposes two anticipatory solution methods based on approximate dynamic programming, specifically decomposed linear value function approximation and neural network value function approximation to effectively manage uncertainties in the dynamic allocation process. We compare DL-VFA and NN-VFA with various state-of-the-art methods (exact re-optimization, PPO) and results show a 6-8% improvement compared to the best benchmarks. NN-VFA provides the best performance and captures nonlinearities in the problem, whereas DL-VFA shows excellent scalability against a minor performance loss. The experiments reveal that consideration of deprivation costs results in improved allocation of scarce supplies both across affected districts and over time. Finally, results show that deploying UAVs can play a crucial role in the allocation of relief goods, especially in the first stages after a disaster. The use of UAVs reduces transportation- and deprivation costs together by 16-20% and reduces maximum deprivation times by 19-40%, while maintaining similar levels of demand coverage, showcasing efficient and effective operations.
Abstract:Home delivery failures, traffic congestion, and relatively large handling times have a negative impact on the profitability of last-mile logistics. These external factors contribute to up to $28\%$ of the overall costs and $25\%$ of emissions for the home delivery supply chain. A potential solution, showing annual growth rates up to $36\%$, is the delivery to parcel lockers or parcel shops, denoted by out-of-home (OOH) delivery. In the academic literature, models of customer behavior with respect to OOH delivery were so far limited to deterministic settings, contrasting with the stochastic nature of actual customer choices. We model the sequential decision-making problem of which OOH location to offer against what incentive for each incoming customer, taking into account future customer arrivals and choices. We propose Dynamic Selection and Pricing of OOH (DSPO), an algorithmic pipeline that uses a novel spatial-temporal state encoding as input to a convolutional neural network. We demonstrate the performance of our method by benchmarking it against three state-of-the-art approaches. Our extensive numerical study, guided by real-world data, reveals that DSPO can save $20.8\%$ in costs compared to a situation without OOH locations, $8.1\%$ compared to a static selection and pricing policy, and $4.6\%$ compared to a state-of-the-art demand management benchmark. We provide comprehensive insights into the complex interplay between OOH delivery dynamics and customer behavior influenced by pricing strategies. The implications of our findings suggest practitioners to adopt dynamic selection and pricing policies as OOH delivery gains a larger market share.