Abstract:From only positive (P) and unlabeled (U) data, a binary classifier could be trained with PU learning, in which the state of the art is unbiased PU learning. However, if its model is very flexible, empirical risks on training data will go negative, and we will suffer from serious overfitting. In this paper, we propose a non-negative risk estimator for PU learning: when getting minimized, it is more robust against overfitting, and thus we are able to use very flexible models (such as deep neural networks) given limited P data. Moreover, we analyze the bias, consistency, and mean-squared-error reduction of the proposed risk estimator, and bound the estimation error of the resulting empirical risk minimizer. Experiments demonstrate that our risk estimator fixes the overfitting problem of its unbiased counterparts.
Abstract:We consider the problem of estimating the class prior in an unlabeled dataset. Under the assumption that an additional labeled dataset is available, the class prior can be estimated by fitting a mixture of class-wise data distributions to the unlabeled data distribution. However, in practice, such an additional labeled dataset is often not available. In this paper, we show that, with additional samples coming only from the positive class, the class prior of the unlabeled dataset can be estimated correctly. Our key idea is to use properly penalized divergences for model fitting to cancel the error caused by the absence of negative samples. We further show that the use of the penalized $L_1$-distance gives a computationally efficient algorithm with an analytic solution. The consistency, stability, and estimation error are theoretically analyzed. Finally, we experimentally demonstrate the usefulness of the proposed method.