Abstract:Collective motion among biological organisms such as insects, fish, and birds has motivated considerable interest not only in biology but also in distributed robotic systems. In a robotic or biological swarm, anomalous agents (whether malfunctioning or nefarious) behave differently than the normal agents and attempt to hide in the "chaos" of the swarm. By defining a graph structure between agents in a swarm, we can treat the agents' properties as a graph signal and use tools from the field of graph signal processing to understand local and global swarm properties. Here, we leverage this idea to show that anomalous agents can be effectively detected using their impacts on the graph Fourier structure of the swarm.
Abstract:Collective motion in animal groups, such as swarms of insects, flocks of birds, and schools of fish, are some of the most visually striking examples of emergent behavior. Empirical analysis of these behaviors in experiment or computational simulation primarily involves the use of "swarm-averaged" metrics or order parameters such as velocity alignment and angular momentum. Recently, tools from computational topology have been applied to the analysis of swarms to further understand and automate the detection of fundamentally different swarm structures evolving in space and time. Here, we show how the field of graph signal processing can be used to fuse these two approaches by collectively analyzing swarm properties using graph Fourier harmonics that respect the topological structure of the swarm. This graph Fourier analysis reveals hidden structure in a number of common swarming states and forms the basis of a flexible analysis framework for collective motion.