Abstract:We introduce the nested stochastic block model (NSBM) to cluster a collection of networks while simultaneously detecting communities within each network. NSBM has several appealing features including the ability to work on unlabeled networks with potentially different node sets, the flexibility to model heterogeneous communities, and the means to automatically select the number of classes for the networks and the number of communities within each network. This is accomplished via a Bayesian model, with a novel application of the nested Dirichlet process (NDP) as a prior to jointly model the between-network and within-network clusters. The dependency introduced by the network data creates nontrivial challenges for the NDP, especially in the development of efficient samplers. For posterior inference, we propose several Markov chain Monte Carlo algorithms including a standard Gibbs sampler, a collapsed Gibbs sampler, and two blocked Gibbs samplers that ultimately return two levels of clustering labels from both within and across the networks. Extensive simulation studies are carried out which demonstrate that the model provides very accurate estimates of both levels of the clustering structure. We also apply our model to two social network datasets that cannot be analyzed using any previous method in the literature due to the anonymity of the nodes and the varying number of nodes in each network.
Abstract:We propose an exact slice sampler for Hierarchical Dirichlet process (HDP) and its associated mixture models (Teh et al., 2006). Although there are existing MCMC algorithms for sampling from the HDP, a slice sampler has been missing from the literature. Slice sampling is well-known for its desirable properties including its fast mixing and its natural potential for parallelization. On the other hand, the hierarchical nature of HDPs poses challenges to adopting a full-fledged slice sampler that automatically truncates all the infinite measures involved without ad-hoc modifications. In this work, we adopt the powerful idea of Bayesian variable augmentation to address this challenge. By introducing new latent variables, we obtain a full factorization of the joint distribution that is suitable for slice sampling. Our algorithm has several appealing features such as (1) fast mixing; (2) remaining exact while allowing natural truncation of the underlying infinite-dimensional measures, as in (Kalli et al., 2011), resulting in updates of only a finite number of necessary atoms and weights in each iteration; and (3) being naturally suited to parallel implementations. The underlying principle for joint factorization of the full likelihood is simple and can be applied to many other settings, such as designing sampling algorithms for general dependent Dirichlet process (DDP) models.