Abstract:The present study aims to explore the feasibility of language translation using quantum natural language processing algorithms on noisy intermediate-scale quantum (NISQ) devices. Classical methods in natural language processing (NLP) struggle with handling large-scale computations required for complex language tasks, but quantum NLP on NISQ devices holds promise in harnessing quantum parallelism and entanglement to efficiently process and analyze vast amounts of linguistic data, potentially revolutionizing NLP applications. Our research endeavors to pave the way for quantum neural machine translation, which could potentially offer advantages over classical methods in the future. We employ Shannon entropy to demonstrate the significant role of some appropriate angles of rotation gates in the performance of parametrized quantum circuits. In particular, we utilize these angles (parameters) as a means of communication between quantum circuits of different languages. To achieve our objective, we adopt the encoder-decoder model of classical neural networks and implement the translation task using long short-term memory (LSTM). Our experiments involved 160 samples comprising English sentences and their Persian translations. We trained the models with different optimisers implementing stochastic gradient descent (SGD) as primary and subsequently incorporating two additional optimizers in conjunction with SGD. Notably, we achieved optimal results-with mean absolute error of 0.03, mean squared error of 0.002, and 0.016 loss-by training the best model, consisting of two LSTM layers and using the Adam optimiser. Our small dataset, though consisting of simple synonymous sentences with word-to-word mappings, points to the utility of Shannon entropy as a figure of merit in more complex machine translation models for intricate sentence structures.
Abstract:A comprehensive pharmaceutical recommendation system was designed based on the patients and drugs features extracted from Drugs.com and Druglib.com. First, data from these databases were combined, and a dataset of patients and drug information was built. Secondly, the patients and drugs were clustered, and then the recommendation was performed using different ratings provided by patients, and importantly by the knowledge obtained from patients and drug specifications, and considering drug interactions. To the best of our knowledge, we are the first group to consider patients conditions and history in the proposed approach for selecting a specific medicine appropriate for that particular user. Our approach applies artificial intelligence (AI) models for the implementation. Sentiment analysis using natural language processing approaches is employed in pre-processing along with neural network-based methods and recommender system algorithms for modeling the system. In our work, patients conditions and drugs features are used for making two models based on matrix factorization. Then we used drug interaction to filter drugs with severe or mild interactions with other drugs. We developed a deep learning model for recommending drugs by using data from 2304 patients as a training set, and then we used data from 660 patients as our validation set. After that, we used knowledge from critical information about drugs and combined the outcome of the model into a knowledge-based system with the rules obtained from constraints on taking medicine.