Abstract:This study explores the use of Federated Learning (FL) for stenosis detection in coronary angiography images (CA). Two heterogeneous datasets from two institutions were considered: Dataset 1 includes 1219 images from 200 patients, which we acquired at the Ospedale Riuniti of Ancona (Italy); Dataset 2 includes 7492 sequential images from 90 patients from a previous study available in the literature. Stenosis detection was performed by using a Faster R-CNN model. In our FL framework, only the weights of the model backbone were shared among the two client institutions, using Federated Averaging (FedAvg) for weight aggregation. We assessed the performance of stenosis detection using Precision (P rec), Recall (Rec), and F1 score (F1). Our results showed that the FL framework does not substantially affects clients 2 performance, which already achieved good performance with local training; for client 1, instead, FL framework increases the performance with respect to local model of +3.76%, +17.21% and +10.80%, respectively, reaching P rec = 73.56, Rec = 67.01 and F1 = 70.13. With such results, we showed that FL may enable multicentric studies relevant to automatic stenosis detection in CA by addressing data heterogeneity from various institutions, while preserving patient privacy.
Abstract:Deep-learning (DL) algorithms are becoming the standard for processing ultrasound (US) fetal images. Despite a large number of survey papers already present in this field, most of them are focusing on a broader area of medical-image analysis or not covering all fetal US DL applications. This paper surveys the most recent work in the field, with a total of 145 research papers published after 2017. Each paper is analyzed and commented on from both the methodology and application perspective. We categorized the papers in (i) fetal standard-plane detection, (ii) anatomical-structure analysis, and (iii) biometry parameter estimation. For each category, main limitations and open issues are presented. Summary tables are included to facilitate the comparison among the different approaches. Publicly-available datasets and performance metrics commonly used to assess algorithm performance are summarized, too. This paper ends with a critical summary of the current state of the art on DL algorithms for fetal US image analysis and a discussion on current challenges that have to be tackled by researchers working in the field to translate the research methodology into the actual clinical practice.