Abstract:Remote sensing images are widely utilized in many disciplines such as feature recognition and scene semantic segmentation. However, due to environmental factors and the issues of the imaging system, the image quality is often degraded which may impair subsequent visual tasks. Even though denoising remote sensing images plays an essential role before applications, the current denoising algorithms fail to attain optimum performance since these images possess complex features in the texture. Denoising frameworks based on artificial neural networks have shown better performance; however, they require exhaustive training with heterogeneous samples that extensively consume resources like power, memory, computation, and latency. Thus, here we present a computationally efficient and robust remote sensing image denoising method that doesn't require additional training samples. This method partitions patches of a remote-sensing image in which a low-rank manifold, representing the noise-free version of the image, underlies the patch space. An efficient and robust approach to revealing this manifold is a randomized approximation of the singular value spectrum of the geodesics' Gramian matrix of the patch space. The method asserts a unique emphasis on each color channel during denoising so the three denoised channels are merged to produce the final image.
Abstract:In this paper, we consider a numerical homogenization of the poroelasticity problem with stochastic properties. The proposed method based on the construction of the deep neural network (DNN) for fast calculation of the effective properties for a coarse grid approximation of the problem. We train neural networks on the set of the selected realizations of the local microscale stochastic fields and macroscale characteristics (permeability and elasticity tensors). We construct a deep learning method through convolutional neural network (CNN) to learn a map between stochastic fields and effective properties. Numerical results are presented for two and three-dimensional model problems and show that proposed method provide fast and accurate effective property predictions.