Abstract:In this paper, we formalize the notion of lambda-AT-model (where $\lambda$ is a non-null integer) for a given chain complex, which allows the computation of homological information in the integer domain avoiding using the Smith Normal Form of the boundary matrices. We present an algorithm for computing such a model, obtaining Betti numbers, the prime numbers p involved in the invariant factors of the torsion subgroup of homology, the amount of invariant factors that are a power of p and a set of representative cycles of generators of homology mod p, for each p. Moreover, we establish the minimum valid lambda for such a construction, what cuts down the computational costs related to the torsion subgroup. The tools described here are useful to determine topological information of nD structured objects such as simplicial, cubical or simploidal complexes and are applicable to extract such an information from digital pictures.
Abstract:Cohomology and cohomology ring of three-dimensional (3D) objects are topological invariants that characterize holes and their relations. Cohomology ring has been traditionally computed on simplicial complexes. Nevertheless, cubical complexes deal directly with the voxels in 3D images, no additional triangulation is necessary, facilitating efficient algorithms for the computation of topological invariants in the image context. In this paper, we present formulas to directly compute the cohomology ring of 3D cubical complexes without making use of any additional triangulation. Starting from a cubical complex $Q$ that represents a 3D binary-valued digital picture whose foreground has one connected component, we compute first the cohomological information on the boundary of the object, $\partial Q$ by an incremental technique; then, using a face reduction algorithm, we compute it on the whole object; finally, applying the mentioned formulas, the cohomology ring is computed from such information.