Abstract:Traditional economic models often rely on fixed assumptions about market dynamics, limiting their ability to capture the complexities and stochastic nature of real-world scenarios. However, reality is more complex and includes noise, making traditional models assumptions not met in the market. In this paper, we explore the application of deep reinforcement learning (DRL) to obtain optimal production strategies in microeconomic market environments to overcome the limitations of traditional models. Concretely, we propose a DRL-based approach to obtain an effective policy in competitive markets with multiple producers, each optimizing their production decisions in response to fluctuating demand, supply, prices, subsidies, fixed costs, total production curve, elasticities and other effects contaminated by noise. Our framework enables agents to learn adaptive production policies to several simulations that consistently outperform static and random strategies. As the deep neural networks used by the agents are universal approximators of functions, DRL algorithms can represent in the network complex patterns of data learnt by trial and error that explain the market. Through extensive simulations, we demonstrate how DRL can capture the intricate interplay between production costs, market prices, and competitor behavior, providing insights into optimal decision-making in dynamic economic settings. The results show that agents trained with DRL can strategically adjust production levels to maximize long-term profitability, even in the face of volatile market conditions. We believe that the study bridges the gap between theoretical economic modeling and practical market simulation, illustrating the potential of DRL to revolutionize decision-making in market strategies.
Abstract:Financial portfolio management investment policies computed quantitatively by modern portfolio theory techniques like the Markowitz model rely on a set on assumptions that are not supported by data in high volatility markets. Hence, quantitative researchers are looking for alternative models to tackle this problem. Concretely, portfolio management is a problem that has been successfully addressed recently by Deep Reinforcement Learning (DRL) approaches. In particular, DRL algorithms train an agent by estimating the distribution of the expected reward of every action performed by an agent given any financial state in a simulator. However, these methods rely on Deep Neural Networks model to represent such a distribution, that although they are universal approximator models, they cannot explain its behaviour, given by a set of parameters that are not interpretable. Critically, financial investors policies require predictions to be interpretable, so DRL agents are not suited to follow a particular policy or explain their actions. In this work, we developed a novel Explainable Deep Reinforcement Learning (XDRL) approach for portfolio management, integrating the Proximal Policy Optimization (PPO) with the model agnostic explainable techniques of feature importance, SHAP and LIME to enhance transparency in prediction time. By executing our methodology, we can interpret in prediction time the actions of the agent to assess whether they follow the requisites of an investment policy or to assess the risk of following the agent suggestions. To the best of our knowledge, our proposed approach is the first explainable post hoc portfolio management financial policy of a DRL agent. We empirically illustrate our methodology by successfully identifying key features influencing investment decisions, which demonstrate the ability to explain the agent actions in prediction time.