Abstract:Code translation aims to convert a program from one programming language (PL) to another. This long-standing software engineering task is crucial for modernizing legacy systems, ensuring cross-platform compatibility, enhancing performance, and more. However, automating this process remains challenging due to many syntactic and semantic differences between PLs. Recent studies show that even advanced techniques such as large language models (LLMs), especially open-source LLMs, still struggle with the task. Currently, code LLMs are trained with source code from multiple programming languages, thus presenting multilingual capabilities. In this paper, we investigate whether such multilingual capabilities can be harnessed to enhance code translation. To achieve this goal, we introduce InterTrans, an LLM-based automated code translation approach that, in contrast to existing approaches, leverages intermediate translations across PLs to bridge the syntactic and semantic gaps between source and target PLs. InterTrans contains two stages. It first utilizes a novel Tree of Code Translation (ToCT) algorithm to plan transitive intermediate translation sequences between a given source and target PL, then validates them in a specific order. We evaluate InterTrans with three open LLMs on three benchmarks (i.e., CodeNet, HumanEval-X, and TransCoder) involving six PLs. Results show an absolute improvement between 18.3% to 43.3% in Computation Accuracy (CA) for InterTrans over Direct Translation with 10 attempts. The best-performing variant of InterTrans (with Magicoder LLM) achieved an average CA of 87.3%-95.4% on three benchmarks.
Abstract:Code translation between programming languages is a long-existing and critical task in software engineering, facilitating the modernization of legacy systems, ensuring cross-platform compatibility, and enhancing software performance. With the recent advances in large language models (LLMs) and their applications to code translation, there is an increasing need for comprehensive evaluation of these models. In this study, we empirically analyze the generated outputs of eleven popular instruct-tuned LLMs with parameters ranging from 1B up to 46.7B on 3,820 translation pairs across five languages, including C, C++, Go, Java, and Python. Our analysis found that between 26.4% and 73.7% of code translations produced by our evaluated LLMs necessitate post-processing, as these translations often include a mix of code, quotes, and text rather than being purely source code. Overlooking the output format of these models can inadvertently lead to underestimation of their actual performance. This is particularly evident when evaluating them with execution-based metrics such as Computational Accuracy (CA). Our results demonstrate that a strategic combination of prompt engineering and regular expression can effectively extract the source code from the model generation output. In particular, our method can help eleven selected models achieve an average Code Extraction Success Rate (CSR) of 92.73%. Our findings shed light on and motivate future research to conduct more reliable benchmarks of LLMs for code translation.