Abstract:Seam carving is a computational method capable of resizing images for both reduction and expansion based on its content, instead of the image geometry. Although the technique is mostly employed to deal with redundant information, i.e., regions composed of pixels with similar intensity, it can also be used for tampering images by inserting or removing relevant objects. Therefore, detecting such a process is of extreme importance regarding the image security domain. However, recognizing seam-carved images does not represent a straightforward task even for human eyes, and robust computation tools capable of identifying such alterations are very desirable. In this paper, we propose an end-to-end approach to cope with the problem of automatic seam carving detection that can obtain state-of-the-art results. Experiments conducted over public and private datasets with several tampering configurations evidence the suitability of the proposed model.
Abstract:In general, biometry-based control systems may not rely on individual expected behavior or cooperation to operate appropriately. Instead, such systems should be aware of malicious procedures for unauthorized access attempts. Some works available in the literature suggest addressing the problem through gait recognition approaches. Such methods aim at identifying human beings through intrinsic perceptible features, despite dressed clothes or accessories. Although the issue denotes a relatively long-time challenge, most of the techniques developed to handle the problem present several drawbacks related to feature extraction and low classification rates, among other issues. However, deep learning-based approaches recently emerged as a robust set of tools to deal with virtually any image and computer-vision related problem, providing paramount results for gait recognition as well. Therefore, this work provides a surveyed compilation of recent works regarding biometric detection through gait recognition with a focus on deep learning approaches, emphasizing their benefits, and exposing their weaknesses. Besides, it also presents categorized and characterized descriptions of the datasets, approaches, and architectures employed to tackle associated constraints.