Abstract:Split Learning (SL) recently emerged as an efficient paradigm for distributed Machine Learning (ML) suitable for the Internet Of Things (IoT)-Cloud systems. However, deploying SL on resource-constrained edge IoT platforms poses a significant challenge in terms of balancing the model performance against the processing, memory, and energy resources. In this work, we present a practical study of deploying SL framework on a real-world Field-Programmable Gate Array (FPGA)-based edge IoT platform. We address the SL framework applied to a time-series processing model based on Recurrent Neural Networks (RNNs). Set in the context of river water quality monitoring and using real-world data, we train, optimize, and deploy a Long Short-Term Memory (LSTM) model on a given edge IoT FPGA platform in different SL configurations. Our results demonstrate the importance of aligning design choices with specific application requirements, whether it is maximizing speed, minimizing power, or optimizing for resource constraints.
Abstract:The significance of distributed learning and inference algorithms in Internet of Things (IoT) network is growing since they flexibly distribute computation load between IoT devices and the infrastructure, enhance data privacy, and minimize latency. However, a notable challenge stems from the influence of communication channel conditions on their performance. In this work, we introduce COMSPLIT: a novel communication-aware design for split learning (SL) and inference paradigm tailored to processing time series data in IoT networks. COMSPLIT provides a versatile framework for deploying adaptable SL in IoT networks affected by diverse channel conditions. In conjunction with the integration of an early-exit strategy, and addressing IoT scenarios containing devices with heterogeneous computational capabilities, COMSPLIT represents a comprehensive design solution for communication-aware SL in IoT networks. Numerical results show superior performance of COMSPLIT compared to vanilla SL approaches (that assume ideal communication channel), demonstrating its ability to offer both design simplicity and adaptability to different channel conditions.