Abstract:Efficient nutrient management and precise fertilization are essential for advancing modern agriculture, particularly in regions striving to optimize crop yields sustainably. The AgroLens project endeavors to address this challenge by develop ing Machine Learning (ML)-based methodologies to predict soil nutrient levels without reliance on laboratory tests. By leveraging state of the art techniques, the project lays a foundation for acionable insights to improve agricultural productivity in resource-constrained areas, such as Africa. The approach begins with the development of a robust European model using the LUCAS Soil dataset and Sentinel-2 satellite imagery to estimate key soil properties, including phosphorus, potassium, nitrogen, and pH levels. This model is then enhanced by integrating supplementary features, such as weather data, harvest rates, and Clay AI-generated embeddings. This report details the methodological framework, data preprocessing strategies, and ML pipelines employed in this project. Advanced algorithms, including Random Forests, Extreme Gradient Boosting (XGBoost), and Fully Connected Neural Networks (FCNN), were implemented and finetuned for precise nutrient prediction. Results showcase robust model performance, with root mean square error values meeting stringent accuracy thresholds. By establishing a reproducible and scalable pipeline for soil nutrient prediction, this research paves the way for transformative agricultural applications, including precision fertilization and improved resource allocation in underresourced regions like Africa.