Abstract:We introduce a new compositional framework for generalized variational inference, clarifying the different parts of a model, how they interact, and how they compose. We explain that both exact Bayesian inference and the loss functions typical of variational inference (such as variational free energy and its generalizations) satisfy chain rules akin to that of reverse-mode automatic differentiation, and we advocate for exploiting this to build and optimize models accordingly. To this end, we construct a series of compositional tools: for building models; for constructing their inversions; for attaching local loss functions; and for exposing parameters. Finally, we explain how the resulting parameterized statistical games may be optimized locally, too. We illustrate our framework with a number of classic examples, pointing to new areas of extensibility that are revealed.
Abstract:Star-shaped Tilted Hexarotors are rapidly emerging for applications highly demanding in terms of robustness and maneuverability. To ensure improvement in such features, a careful selection of the tilt angles is mandatory. In this work, we present a rigorous analysis of how the force subspace varies with the tilt cant angles, namely the tilt angles along the vehicle arms, taking into account gravity compensation and torque decoupling to abide by the hovering condition. Novel metrics are introduced to assess the performance of existing tilted platforms, as well as to provide some guidelines for the selection of the tilt cant angle in the design phase.